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Note

The role of constitutive equations in chemical kinetics

JAN KRATOCHVIL and JAROSLAV SESTAK

Institute of Solid State Physics of The Czeraoslocak Academy of Sciences, Prague
(C:zechoslorakia)

(Received 31 May 1973)

Recent articles on the non-isothermal rate equation'~> have initiated a rather
extensive discussion* 3. Misunderstanding arose mainly about the meaning of the
partial derivatives of the function f in the equation for the fractional conversion 2,
(a Kinetic variable conventionally normalized a =0 at 7=0 and a =1 at > x):

x2=f(T, 1) ¢))

dx = (a—) dr + (OTI) daT 2
CT /s ct)r

where 7 and r represent temperature and time, respectively. Some authors claimed
that only the partial derivative (¢f/¢1); can te used so that the function f is appro-
priate for the description of an isothermally meusured rate of 2 chemical reaction'—3,
while others proposed that it may describe non-irothermal kinetics as well if either
the partia! derivative (&fj¢T),* or the total differential dz> are equal to zero. Another
suggestion® related this problem to the non-uniform temperature within a solid
sample. Although some useful criticism on these inccrrect ideas was already given’™*3
and the path function character of f in eqn (1) emphasized®® there still remain
certain confusions. Therefore we would like to clarifv this question from a more
unifying viewpoint.

We will mention two different ways in which the 1elation (1) may be understood:

(A) If eqn (1) rcpresents an cquation of siate (called “the constitutive
equation™) of a chemical system under consideratior then eqgn (l) implies that the
value x at ¢ depends on the iime ¢, and the instantaneous value of the temperature T
at r regardless of its previous temperature history. The constitutive equation of type (1)
would describe the behaviour of a system controlled by an independent “internal
clock™. Such an equation is e.g. the censtitutive equation for the pressure p of a gas
which is evolved by a radioactive decay. The number of molecules produced is con-
trolled by the radioactive mechanism and is not affected by the temperature. The
pressure p is expressed by a function P of the numbar of molecules, i.e. a function of
time f, and the temperature T at ¢ only, p = P(T, ¢).
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Note that the subscript & indicates that the solution depends on the temperature
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converted into the form (1). We illustrate this for a simple casc of the ~linear” non-

Equations of the eqn (3) type are well established in isothermal kinetics”-!*-!
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temperature regimes & the isochronal derivative (Cg/¢¢), indicates the change of x
measured at the same time 7 between two infinitesimally close regimes differing by dé¢.
i.e. between two paralle! 2—-¢ curves which are the sections of the surface takenat ¢ and
¢ +d¢. Similarly we can interpret the derivative (éf'¢T), using the «—r-T diagram.
A more comprehensive discussion of the meaning of the partial derivatives was dealt

with in our previous pwper!3.

We thank Dr. A. Bergstein, Dr. P. Holba, Dr. P. Hrma, Dr. E. Kratochvilova
and Dr. K. Zavéta for helpful comments.
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